Prediction Framework for Statistical Respiratory Motion Modeling
نویسندگان
چکیده
Breathing motion complicates many image-guided interventions working on the thorax or upper abdomen. However, prior knowledge provided by a statistical breathing model, can reduce the uncertainties of organ location. In this paper, a prediction framework for statistical motion modeling is presented and different representations of the dynamic data for motion model building of the lungs are investigated. Evaluation carried out on 4D-CT data sets of 10 patients showed that a displacement vector-based representation can reduce most of the respiratory motion with a prediction error of about 2 mm, when assuming the diaphragm motion to be known.
منابع مشابه
A fast model for prediction of respiratory lung motion for image-guided radiotherapy: A feasibility study
Background: The aim of this work was to study the feasibility of constructing a fast thorax model suitable for simulating lung motion due to respiration using only one CT dataset. Materials and Methods: For each of six patients with different thorax sizes, two sets of CT images were obtained in single-breath-hold inhale and exhale stages in the supine position. The CT images were then ...
متن کاملShape-correlated Statistical Modeling and Analysis for Respiratory Motion Estimation
Xiaoxiao Liu: Shape-correlated Statistical Modeling and Analysis for Respiratory Motion Estimation. (Under the direction of Stephen M. Pizer.) Respiratory motion challenges image-guided radiation therapy (IGRT) with location uncertainties of important anatomical structures in the thorax. Effective and accurate respiration estimation is crucial to account for the motion effects on the radiation ...
متن کاملPattern-Based Variant-Best-Neighbors Respiratory Motion Prediction Using Orthogonal Polynomials Approximation
Motion-adaptive radiotherapy techniques are promising to deliver truly ablative radiation doses to tumors with minimal normal tissue exposure by accounting for realtime tumor movement. However, a major challenge of successful applications of these techniques is the realtime prediction of breathing-induced tumor motion to accommodate system delivery latencies. Predicting respiratory motion in re...
متن کاملDynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback
Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...
متن کاملThe Second International Workshop on Pulmonary Image Analysis
In this paper we propose an approach to generate a 4D statistical model of respiratory lung motion based on thoracic 4D CT data of different patients. A symmetric diffeomorphic intensity–based registration technique is used to estimate subject–specific motion models and to establish inter–subject correspondence. The statistics on the diffeomorphic transformations are computed using the Log–Eucl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 3 شماره
صفحات -
تاریخ انتشار 2010